Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.418
Filtrar
1.
Cell Death Dis ; 15(4): 262, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615026

RESUMO

Gliomas are among the most fatal tumors, and the available therapeutic options are very limited. Additionally, the blood-brain barrier (BBB) prevents most drugs from entering the brain. We designed and produced a ferritin-based stimuli-sensitive nanocarrier with high biocompatibility and water solubility. It can incorporate high amounts of the potent topoisomerase 1 inhibitor Genz-644282. Here, we show that this nanocarrier, named The-0504, can cross the BBB and specifically deliver the payload to gliomas that express high amounts of the ferritin/transferrin receptor TfR1 (CD71). Intranasal or intravenous administration of The-0504 both reduce tumor growth and improve the survival rate of glioma-bearing mice. However, nose-to-brain administration is a simpler and less invasive route that may spare most of the healthy tissues compared to intravenous injections. For this reason, the data reported here could pave the way towards a new, safe, and direct ferritin-based drug delivery method for brain diseases, especially brain tumors.


Assuntos
Ferritinas , Glioma , Animais , Camundongos , Taxa de Sobrevida , Glioma/tratamento farmacológico , Encéfalo , Barreira Hematoencefálica
2.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612758

RESUMO

The prevention of tumor recurrence by the successful targeting of glioma stem cells endowed with a tumor-initiating capacity is deemed the key to the long-term survival of glioblastoma patients. Glioma stem cells are characterized by their marked therapeutic resistance; however, recent evidence suggests that they have unique vulnerabilities that may be therapeutically targeted. We investigated MDM2 expression levels in glioma stem cells and their non-stem cell counterparts and the effects of the genetic and pharmacological inhibition of MDM2 on the viability of these cells as well as downstream molecular pathways. The results obtained showed that MDM2 expression was substantially higher in glioma stem cells than in their non-stem cell counterparts and also that the inhibition of MDM2, either genetically or pharmacologically, induced a more pronounced activation of the p53 pathway and apoptotic cell death in the former than in the latter. Specifically, the inhibition of MDM2 caused a p53-dependent increase in the expression of BAX and PUMA and a decrease in the expression of survivin, both of which significantly contributed to the apoptotic death of glioma stem cells. The present study identified the MDM2-p53 axis as a novel therapeutic vulnerability, or an Achilles' heel, which is unique to glioma stem cells. Our results, which suggest that non-stem, bulk tumor cells are less sensitive to MDM2 inhibitors, may help guide the selection of glioblastoma patients suitable for MDM2 inhibitor therapy.


Assuntos
Glioblastoma , Glioma , Humanos , Proteína Supressora de Tumor p53/genética , Glioma/tratamento farmacológico , Glioma/genética , Apoptose , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-mdm2/genética
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612890

RESUMO

The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.


Assuntos
Estresse do Retículo Endoplasmático , Glioma , Humanos , Resposta a Proteínas não Dobradas , Retículo Endoplasmático , Glioma/tratamento farmacológico , Preparações Farmacêuticas
4.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607080

RESUMO

Poor prognosis in high-grade gliomas is mainly due to fatal relapse after surgical resection in the absence of efficient chemotherapy, which is severely hampered by the blood-brain barrier. However, the leaky blood-brain-tumour barrier forms upon tumour growth and vascularization, allowing targeted nanocarrier-mediated drug delivery. The homotypic targeting ability of cell-membrane fragments obtained from cancer cells means that these fragments can be exploited to this aim. In this experimental work, injectable nanoemulsions, which have a long history of safe clinic usage, have been wrapped in glioma-cell membrane fragments via co-extrusion to give targeted, homogeneously sized, sterile formulations. These systems were then loaded with three different chemotherapeutics, in the form of hydrophobic ion pairs that can be released into the target site thanks to interactions with physiological components. The numerous assays performed in two-dimensional (2D) and three-dimensional (3D) cell models demonstrate that the proposed approach is a versatile drug-delivery platform with chemo-tactic properties towards glioma cells, with adhesive interactions between the target cell and the cell membrane fragments most likely being responsible for the effect. This approach's promising translational perspectives towards personalized nanomedicine mean that further in vivo studies are foreseen for the future.


Assuntos
Glioma , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica/metabolismo , Membrana Celular
5.
Oncoimmunology ; 13(1): 2338965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590799

RESUMO

Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Glioma/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células Mieloides/patologia , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Receptores CCR2 , Receptores CCR5/uso terapêutico
6.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Camundongos Endogâmicos C57BL , Transdução de Sinais , Glioma/tratamento farmacológico , Proliferação de Células
7.
Neurocirugía (Soc. Luso-Esp. Neurocir.) ; 35(2): 87-94, Mar-Abr. 2024. graf, tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-231279

RESUMO

Antecedentes y objetivos: Los ependimomas de fosa posterior de tipo lateral son un subtipo clínico e histológico característico, con un pronóstico poco favorable. Su incidencia es baja y su manejo quirúrgico es particularmente complejo. El objetivo del presente trabajo es revisar nuestra serie de ependimomas de fosa posterior de tipo lateral y contrastar nuestros resultados con la literatura disponible. Materiales y métodos: Sobre una muestra de 30 ependimomas intervenidos en neurocirugía pediátrica en los últimos 10 años, se identifican 7 casos de ependimomas de tipo lateral de la fosa posterior. Sobre esta serie de casos se realiza un estudio descriptivo retrospectivo. Resultados: La edad media de nuestros pacientes al diagnóstico fue de 3,75 años. Seis se presentaron con hidrocefalia. El volumen tumoral medio al diagnóstico fue de 61cm3. En 6 casos se llevó a cabo una resección completa y en un caso una resección casi completa. Cinco pacientes precisaron de forma transitoria una traqueostomía y una gastrostomía. La media de seguimiento fue de 58 meses. Durante este tiempo se produjo un caso de recidiva que posteriormente evolucionó a muerte. Cuatro casos de hidrocefalia posquirúrgica precisaron una derivación ventriculoperitoneal de LCR y 2 casos fueron manejados con ventriculostomía endoscópica. En la última revisión en consulta 4 pacientes llevaban una vida normal y 2 mostraban una restricción leve de la actividad de acuerdo con la escala de Lansky. Conclusiones: El objetivo del tratamiento quirúrgico de los ependimomas de tipo lateral de fosa posterior es la resección completa. Los déficits asociados a la disfunción de los pares bajos en nuestra serie fueron muy frecuentes pero transitorios. La progresiva caracterización molecular de estos tumores puede identificar diferentes grupos de riesgo sobre los que dirigir de forma adecuada la intensidad de los tratamientos adyuvantes.(AU)


Background and aims: Lateral-type posterior fossa ependymomas are a well-defined subtype of tumors both clinically and pathologically, with a poor prognosis. Their incidence is low and surgical management is challenging. The objective of the present work is to review our series of lateral-tye posterior fossa ependymomas and compare our results with those of previous series. Materials and methods: Among 30 cases of ependymoma operated in our pediatric department in the last 10 years, we identified seven cases of lateral-type posterior fossa ependymomas. We then performed a retrospective, descriptive study. Results: Mean age of our patients was 3.75 years. Six cases presented with hydrocephalus. Mean tumor volume at diagnosis was 61cc. A complete resection was achieved in six cases and a near-total resection in one patient. Five patients transiently required a gastrostomy and a tracheostomy. Mean follow-up was 58 months. One case progressed along this period and eventually died. Four cases of hydrocephalus required a ventriculoperitoneal CSF shunt and two were managed with a third ventriculostomy. At last follow-up four patients carried a normal life and two displayed a mild restriction according to Lansky's scale. Conclusions: The aim of surgical treatment in lateral-type posterior fossa ependymomas is complete resection. Neurological deficits associated to lower cranial nerve dysfunction are common but transient. Deeper genetic characterization of these tumors may identify risk factors that guide stratification of adjuvant therapies.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Ependimoma/cirurgia , Sobrevivência , Ângulo Cerebelopontino , Glioma/tratamento farmacológico , Glioma/cirurgia , Epidemiologia Descritiva , Estudos Retrospectivos , Neurocirurgia , Procedimentos Neurocirúrgicos , Pediatria
8.
Support Care Cancer ; 32(5): 290, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627334

RESUMO

PURPOSE: Although lomustine has been used as a chemotherapeutic agent for decades, no recommendation on appropriate chemotherapy-induced nausea and vomiting (CINV) prophylaxis is available. As CINV is considered one of the most bothersome side effects of chemotherapy, adequate prophylaxis is of relevance to improve quality of life during cancer treatment. The aim of this retrospective case series was to report the incidence and severity of CINV in pediatric patients with high-grade glioma treated with lomustine and to formulate recommendations for appropriate CINV prophylaxis. METHODS: Pediatric patients treated with lomustine for high-grade glioma according to the ACNS 0423 protocol were identified retrospectively. Two researchers independently reviewed and classified complaints of CINV and administered CINV prophylaxis. Treatment details, tumor localization, and response to therapy were systematically extracted from the patients' files. RESULTS: Seventeen children aged 8-18 years received a median of four cycles of lomustine. CINV complaints and administered prophylaxis were evaluable in all patients. Moderate or severe CINV was observed in 13/17 (76%) patients. Administered prophylactic CINV regimens varied from no prophylaxis to triple-agent combinations. CONCLUSION: In this case series, we identified lomustine as a highly emetogenic chemotherapeutic agent. According to the current guidelines, CINV prophylaxis with a 5-HT3 receptor antagonist in combination with dexamethasone and (fos)aprepitant is recommended.


Assuntos
Antieméticos , Antineoplásicos , Glioma , Humanos , Criança , Estudos Retrospectivos , Lomustina/efeitos adversos , Qualidade de Vida , Antineoplásicos/efeitos adversos , Náusea/induzido quimicamente , Náusea/prevenção & controle , Náusea/tratamento farmacológico , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Vômito/prevenção & controle , Glioma/tratamento farmacológico
9.
Cancer Med ; 13(8): e7154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629258

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICI) have improved outcomes in a variety of adult cancers and are prescribed with increasing frequency across oncology. However, patterns of off-label use of ICI in pediatrics remain unclear. METHODS: This is a single-institution, retrospective cohort study evaluating off-label ICI use in pediatric and young adult patients with cancer treated at our institution from 2014 to 2022. Response was based on clinician assessment derived from clinical records. Immune-related adverse events (iRAEs) were classified according to CTCAE v5.0. RESULTS: We identified 50 unique patients treated with off-label ICI (28 with solid tumors, 20 with central nervous system (CNS) tumors, 2 with hematologic malignancies). At time of ICI initiation, only five patients (10%) had localized disease, and all but one patient was treated in the relapsed/refractory setting. All patients were treated with the FDA-approved weight-based dosing recommendations. Overall, there was disease control in 21 patients (42%), with best response including one complete response (melanoma), two partial responses (high-grade glioma, CNS nongerminomatous germ cell tumor), and 18 patients with stable disease. Forty-four patients (88%) eventually experienced disease progression. Among 22 patients (44%) experiencing iRAEs, 10 (20%) had a grade ≥3 irAE, 12 (24%) required corticosteroids, and 14 (28%) required ICI discontinuation. irAE occurrence was associated with significantly improved progression-free survival (HR 0.35; 95% CI: 0.18 to 0.68; p = 0.002) and overall survival (HR 0.33; 95% CI: 0.17 to 0.66; p = 0.002). CONCLUSIONS: At our institution, ICI was most commonly prescribed in the relapsed/refractory setting to patients with metastatic disease. The treatment was generally well-tolerated in the pediatric population. The overall response rate was low, and the majority of patients eventually experienced disease progression. A few patients, however, had durable treatment responses. Further studies are needed to identify which pediatric patients are most likely to benefit from ICI.


Assuntos
Glioma , Inibidores de Checkpoint Imunológico , Adulto Jovem , Humanos , Criança , Inibidores de Checkpoint Imunológico/efeitos adversos , Uso Off-Label , Estudos Retrospectivos , Glioma/tratamento farmacológico , Progressão da Doença
10.
Pharmacol Rep ; 76(2): 223-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457018

RESUMO

Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Canabinoides , Glioblastoma , Glioma , Humanos , Camundongos , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Endocanabinoides/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia
11.
Drug Deliv ; 31(1): 2324716, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38555735

RESUMO

Annonaceous acetogenins (ACGs) have potent anti-tumor activity, and the problems of their low solubility, hemolysis, and in vivo delivery have been solved by encapsulation into nanoparticles. However, the high toxicity still limits their application in clinic. In this paper, the co-delivery strategy was tried to enhance the in vivo anti-tumor efficacy and reduce the toxic effects of ACGs. Ginsenoside Rh2, a naturally derived biologically active compound, which was reported to have synergistic effect with paclitaxel, was selected to co-deliver with ACGs. And due to its similarity with cholesterol in chemical structure, the co-loading liposomes, (ACGs + Rh2)-Lipo, were successfully constructed using Rh2 instead of cholesterol as the membrane material. The obtained (ACGs + Rh2)-Lipo and ACGs-Lipo had similar mean particle size (about 80 nm), similar encapsulation efficiency (EE, about 97%) and good stability. The MTS assay indicated that (ACGs + Rh2)-Lipo had stronger toxicity in vitro. In the in vivo study, in contrast to ACGs-Lipo, (ACGs + Rh2)-Lipo demonstrated an improved tumor targetability (3.3-fold in relative tumor targeting index) and significantly enhanced the antitumor efficacy (tumor inhibition rate, 72.9 ± 5.4% vs. 60.5 ± 5.4%, p < .05). The body weight change, liver index, and spleen index of tumor-bearing mice showed that Rh2 can attenuate the side effects of ACGs themselves. In conclusion, (ACGs + Rh2)-Lipo not only alleviated the toxicity of ACGs to the organism, but also enhanced their anti-tumor activity, which is expected to break through their bottleneck.


Assuntos
Acetogeninas , Ginsenosídeos , Glioma , Camundongos , Animais , Acetogeninas/farmacologia , Acetogeninas/química , Lipossomos , Glioma/tratamento farmacológico , Colesterol
12.
Cell Death Dis ; 15(3): 205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467631

RESUMO

Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Células Epiteliais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Cromossômicas não Histona
13.
Brain Behav ; 14(3): e3465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468469

RESUMO

BACKGROUND: SP gene family, consisting of SP100, SP110, SP140, and SP140L, has been implicated in the initiation and advancement of numerous malignancies. Nevertheless, their clinical significance in glioma remains incompletely understood. METHOD: Expression levels and prognostic significance of SP family members were evaluated in the TCGA and CGGA datasets. Multifactorial analysis was used to identify SP gene family members that can independently impact the prognosis of glioma patients. A SP140-based predictive risk model/nomogram was developed in TCGA dataset and validated in CGGA dataset. The model's performance was evaluated through receiver operating characteristic (ROC) curves, calibration plots, and decision curve analyses. Phenotypic associations of SP140 and TRIM22 were examined through CancerSEA and TIMER. The effect of SP140 inhibitor in glioma progress and TRIM22/PI3K/AKT signaling pathway was confirmed in U251/U87 glioma cells. RESULTS: The SP family members exhibited elevated expression in gliomas and were negatively correlated with prognosis. SP140 emerged as an independent prognostic factor, and a SP140-based nomogram/predictive risk model demonstrated high accuracy. SP140 inhibitor, GSK761, lead to the suppression of TRIM22 expression and the PI3K/AKT signaling pathway. GSK761 also restrain glioma proliferation, migration, and invasion. Furthermore, SP140 and TRIM22 coexpressed in glioma cells with high level of vascular proliferation, TRIM22 is closely associated with the immune cell infiltration. CONCLUSION: SP140-based nomogram proved to be a practical tool for predicting the survival of glioma patients. SP140 inhibitor could suppress glioma progress via TRIM22/PI3K/AKT signaling pathway.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Transdução de Sinais , Glioma/tratamento farmacológico , Glioma/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/farmacologia , Proteínas Repressoras/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Fatores de Transcrição , Antígenos Nucleares/metabolismo , Antígenos Nucleares/farmacologia
14.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507470

RESUMO

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Enxofre/metabolismo , Enxofre/uso terapêutico , Fumaratos , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/metabolismo
15.
J Cell Mol Med ; 28(7): e18221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509759

RESUMO

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Assuntos
Glioma , Naftalenos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo , Naftalenos/farmacologia
16.
Magy Onkol ; 68(1): 67-75, 2024 Mar 14.
Artigo em Húngaro | MEDLINE | ID: mdl-38484377

RESUMO

Gliomas are considered as locally aggressive diseases, consequently, surgery and radiotherapy are the basic therapies of the glial tumors. Nevertheless, the long-term ineffectiveness of the local treatment modalities and the frequently observed relapses explain the unmet medical need for the elaboration of effective systemic treatment regimes. In the last few decades of the 20th century, the use of different chemotherapeutic agents and their combinations, and the alternative administration of drugs have been in the therapeutic forefront of gliomas, whereas, later, in the first years of this century temozolomide was introduced to the everyday clinical practice as the most effective "anti-glioma" medicine, and it is still widely used both in monotherapy and in different combinations. Nevertheless, in the last two decades, considering the recognition of different predictive molecular markers, different targeted therapies, e.g. VEGFR inhibitor agents were also introduced into the routine clinical practice, and there have been promising results published in immunotherapy trials in the recent years, as well. Besides the promising results with the novel systemic therapies, it should be emphasized that both in the primary and the salvage care of the glial tumors the most effective treatment options are the individualized combinations of local and systemic treatment modalities, with the proper interpretation of brain imaging data and patient-centered clinical management.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Temozolomida/uso terapêutico , Imunoterapia/métodos
17.
Nano Lett ; 24(12): 3727-3736, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498766

RESUMO

The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.


Assuntos
Glioblastoma , Glioma , Nanopartículas , Nitrofenóis , Humanos , Glioblastoma/patologia , Raios X , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Nanopartículas/química , Quimiorradioterapia , Doxorrubicina
18.
Cancer Res Commun ; 4(3): 876-894, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38445960

RESUMO

IDH1mut gliomas produce high levels of D-2-hydroxyglutarate (D-2-HG), an oncometabolite capable of inhibiting α-ketoglutarate-dependent dioxygenases critical to a range of cellular functions involved in gliomagenesis. IDH1mut gliomas also exhibit slower growth rates and improved treatment sensitivity compared with their IDH1wt counterparts. This study explores the mechanism driving apparent reduced growth in IDH1mut gliomas. Specifically, we investigated the relationship between IDH1mut and the RNA N6-methyladenosine (m6A) demethylases FTO and ALKBH5, and their potential for therapeutic targeting. We investigated the role of D-2-HG and m6A in tumor proliferation/viability using glioma patient tumor samples, patient-derived gliomaspheres, and U87 cells, as well as with mouse intracranial IDH1wt gliomasphere xenografts. Methylation RNA immunoprecipitation sequencing (MeRIP-seq) RNA sequencing was used to identify m6A-enriched transcripts in IDH1mut glioma. We show that IDH1mut production of D-2-HG is capable of reducing glioma cell growth via inhibition of the m6A epitranscriptomic regulator, FTO, with resultant m6A hypermethylation of a set of mRNA transcripts. On the basis of unbiased MeRIP-seq epitranscriptomic profiling, we identify ATF5 as a hypermethylated, downregulated transcript that potentially contributes to increased apoptosis. We further demonstrate how targeting this pathway genetically and pharmacologically reduces the proliferative potential of malignant IDH1wt gliomas, both in vitro and in vivo. Our work provides evidence that selective inhibition of the m6A epitranscriptomic regulator FTO attenuates growth in IDH1wt glioma, recapitulating the clinically favorable growth phenotype seen in the IDH1mut subtype. SIGNIFICANCE: We show that IDH1mut-generated D-2-HG can reduce glioma growth via inhibition of the m6A demethylase, FTO. FTO inhibition represents a potential therapeutic target for IDH1wt gliomas and possibly in conjunction with IDH1mut inhibitors for the treatment of IDH1mut glioma. Future studies are necessary to demonstrate the role of ATF5 downregulation in the indolent phenotype of IDH1mut gliomas, as well as to identify other involved gene transcripts deregulated by m6A hypermethylation.


Assuntos
Adenina/análogos & derivados , Glioma , Glutaratos , Humanos , Animais , Camundongos , Glioma/tratamento farmacológico , RNA/metabolismo , RNA Mensageiro/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
19.
J Neurooncol ; 167(1): 145-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457090

RESUMO

PURPOSE: Adult Diffuse midline glioma (DMG) is a very rare disease. DMGs are currently treated with radiotherapy and chemotherapy even if only a few retrospective studies assessed the impact on overall survival (OS) of these approaches. METHODS: We carried out an Italian multicentric retrospective study of adult patients with H3K27-altered DMG to assess the effective role of systemic therapy in the treatment landscape of this rare tumor type. RESULTS: We evaluated 49 patients from 6 Institutions. The median age was 37.3 years (range 20.1-68.3). Most patients received biopsy as primary approach (n = 30, 61.2%) and radiation therapy after surgery (n = 39, 79.6%). 25 (51.0%) of patients received concurrent chemotherapy and 26 (53.1%) patients received adjuvant temozolomide. In univariate analysis, concurrent chemotherapy did not result in OS improvement while adjuvant temozolomide was associated with longer OS (21.2 vs. 9.0 months, HR 0.14, 0.05-0.41, p < 0.001). Multivariate analysis confirmed the role of adjuvant chemotherapy (HR 0.1, 95%CI: 0.03-0.34, p = 0.003). In patients who progressed after radiation and/or chemotherapy the administration of a second-line systemic treatment had a significantly favorable impact on survival (8.0 vs. 3.2 months, HR 0.2, 95%CI 0.1-0.65, p = 0.004). CONCLUSION: In our series, adjuvant treatment after radiotherapy can be useful in improving OS of patients with H3K27-altered DMG. When feasible another systemic treatment after treatment progression could be proposed.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Temozolomida/uso terapêutico , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico , Glioma/tratamento farmacológico , Glioma/patologia , Dacarbazina/uso terapêutico , Quimioterapia Adjuvante
20.
J Nanobiotechnology ; 22(1): 93, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443927

RESUMO

Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.


Assuntos
Células Endoteliais , Glioma , Humanos , Oxaliplatina/farmacologia , Peróxido de Hidrogênio , Glioma/tratamento farmacológico , Hidrocarbonetos Aromáticos com Pontes , Ferritinas , Imunossupressores , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...